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A model of fatigue crack growth 
in polymers 
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London, UK 

A model of fatigue crack growth is proposed based on a line plastic zone analysis. It is 
assumed that the effect of cycling is to reduce the craze stress to some proportion of the 
original value depending on the degree of unloading. Successive Ioadings result in growth 
of the craze with a corresponding increase in crack opening displacement. At  some critical 
value of this displacement, crack growth occurs and the rate of growth is related to the 
applied stress intensity factor and the critical static value. The results of the model are 
applied to data on several polymers and a good description of growth rate, mean stress 
and frequency effects is given. Finally, some fatigue lives are predicted. 

1. Introduction 
There has been a considerable amount of pub- 
lished data on fatigue crack growth in polymers 
described in terms of the stress intensity factor K 
[1 -5] .  Most of it is reasonably well described by 
the well known Paris equation; 

aa/dN <~ ( ~ ) m  (1) 

where daldN is the crack growth per cycle, AK is 
the stress intensity amplitude, and rn is a constant 
of approximately four. There is well established 
evidence of a mean stress effect, and frequency 
can also influence the crack growth rate [2, 3]. 
These effects are usually incorporated in the Paris 
equation by the addition of empirical parameters 
which give a reasonable description of the data. 

Theoretical predictions of fatigue crack growth 
laws have also received much attention, particu- 
larly for metals. Since crack growth occurs under 
loadings which would not induce static fracture, it 
is necessary to introduce some form of either 
accumulation of damage or energy which results in 
eventual fracture. The line plastic zone model has 
been widely used for this purpose since it is an 
elastic analysis and leads to complete solutions 
[6, 7]. Various damage criteria have been used [8] 
but most of the effort has been in plastic energy 
accumulation analyses [7]. A visco-elastic exten- 
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sion of this latter approach has also been given 
which incorporates frequency effects [9]. 

Since most of the experimental data is rather 
similar in form for both metals and polymers, it is 
clear that the theoretical results will also be 
similar. It is thus difficult to judge the merits of 
the various assumptions in terms of the fit to 
experimental data and much of the theory has not 
been adequately tested. 

In the light of this situation, it is necessary to 
justify presenting yet another analysis. The 
assumptions used here have the distinction of 
having been used to describe other crack growth 
phenomena in polymers with considerable success. 
It has been found that a constant critical crack 
opening displacement is an accurate description of 
visco-elastic crack growth phenomena over a wide 
range of time and temperature [10, 11] and the 
same criteria will be used here. In addition, 
environmental cracking and crazing in polymers 
has been accurately modelled [12] by assuming 
that the stress in the craze is constant but 
decreased by the environment. Here the same idea 
is used but now the decrease in craze stress is 
caused by the cyclic loading. These two simple 
assumptions may be incorporated into the line 
plastic zone analysis to give results which appear 
to model at least some data quite well. Thus, the 
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Figure 1 Line zone models; 
(a) single stage zone, (b) two-stage zone. 

analysis has the dual virtue of  continuity with 
other fracture processes and simplicity, and for 
these reasons may prove useful. 

where ~2 = ro/rt .  For ~ ~ 1, this may be reduced 
to: 

Sac{ _ -- e)x/(r  t )x/(ro)) = ~ e r t  + 2(1 

If ~ = ~c at fracture, then 

8 ac 
8 e = - - - r  e 

r r E  

where re is the critical single stage zone length at 
fracture, and we have 

re = 2x/(rl)x/(r)  -- ~ , .  (4) 

Thus, from Equation 4, the zone length at fracture 
r l ,  is defined in terms of  the constant re and the 
initial value r. The tip zone size at fracture may 
also be obtained 

ro 1 1 -- ~ (5) 
r (1 a)2 

2. The two-stage line plastic zone 
Fig. la shows the conventional line plastic zone 
which has proved to be an accurate description of  
crack tip crazes in polymers. For small zones, i.e. 
r ~ a, the crack length, the crack opening displace- 
ment (COD) 8, and zone length r, are given by: 

K 2 ~r K 2 
6 = r -  

Eoe ' 8 a~ 

which may be rewritten as: 

= K 8 = - -  % r  (2) aeX/~ and 7rE 

Fig. lb is a similar small zone in which the stress is 
oe over a region of  length ro at the zone tip, and 
C~ac over the remaining length. The equivalent 
relationships to Equations 2 are 

(1 - a )%x/ro)  + a%x/( r l )  

i.e. 

and 
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V~ = o~/(rx) + (1 -- a)x/(ro), (3) 

= 8Oe 
- - g l  roe 

3. T h e  f a t i g u e  d a m a g e  cr i t er ion  

The craze at the crack tip in a stressed polymer is a 
system of  interconnected voids in which the liga- 
ments of  material between the voids provide the 
strength of  craze in the craze stress ae. If  the craze 
is unloaded and then reloaded, it is reasonable to 
expect that some of  the ligaments will be damaged 
thus reducing %. In reality, several cycles would 
be necessary to complete this damage to a limiting 
value but here, for simplicity, we will assume that 
it occurs in a single unloading and reloading. It 
seems likely that the steady-state could be 
achieved rapidly but the solutions given here are 
unlikely to be precise for small numbers of cycles. 

The degree of  damage will depend on the 
amount of  unloading and this may be described in 
terms of  the limiting crack opening displacements 
during the fatigue cycle, i.e. 

K2m~ K~m_ 
81 - , 52 - , 

ac E ' ac E 
! 

where % is some current value of  the craze stress. 
We now suppose that the degree of  damage may be 
defmed in terms of  the change in displacement 
(~ 1 -- 82) as a proportion of  81. Thus, the change 
in oe is given by: 



where f is the damage factor. This may then be 
used to describe the damaged craze stress; 

6 1 - - 6  2 
0~O" c : O c - O "  c - -  f ,  

6, 

so that 

a = (1 - - f )  +fR 2, (6) 

where R = Kmi~/Kma~. 

4. Crack incubation 
Suppose that a crack is loaded with a maximum K 
value less than Ke, then a zone is formed with a 
craze stress Oc and a displacement 8 < 6e so that 
fracture does not  occur. I f  K is now decreased to 
Kmi n and then reapplied, the craze stress on the 
original zone length r will be reduced to Sac so to 
maintain equilibrium some new craze must form 
with a craze stress of  %. From Equation 3, we 
have 

x/r = (1 -- @ , / t o  + c,,,/r, 

and we know that the length over which act e acts: 

s  0 = r 

in this case. Thus, the craze growth re is given by: 

~/r = ( 1 - - a ) x / r o  + a x / ( r + r o )  

i . e .  

~/ro = x/ro ~_(l ~a_) [X/(1--a)--aX/2],a ~ �89 
I 

This process may then be repeated with r0 added 
to damaged zone length in the next cycle. In the 
general case, if the total zone length is ru a f t e rN  
cycles, then the increase in length is given by: 

x/r = (1 -- a)x/ro + ax/rN + re 

so that 

I 
IOO 

Number of cycles~ N 

and 

X/r0  -- r x 
1 - -  2a 

(3) 

The zone length will increase by a decreasing 
amount each cycle and tend to a limiting value as 
N--> oo given when re --> 0, i.e. 

rN -2 
- -  ~ ( 8 )  

r 

6 will also increase during this process and the 
critical condition is given by Equation 4 

Clearly, there is a limiting value of  the ratio K/Ke, 
below which the fracture condition will not  be 
achieved, given by: 

(K/Ke)limi t = X/OC (10) 

The number of  cycles to reach 6e for a given K/Ke 
for any a may only be found exactly by summing 
Equations 7, and Table I shows some computed 
values of  rlv/r. Some of  these data have been con- 
verted to K/Ke versus N to crack growth initiation 
values in Fig. 2. For low a values, the growth per 
cycle is small and Equations 7 may be approxi- 
mated to a differential form in which r0 - dr1/dN, 

I-O 

O Integral f rom Equat ion II 
a=O.1 

=0.5 

o.5 
"~O ~=O.2 

~ ~ 0 - - - - - _ _ _ _ _  O' a=O,1 

a =0.05 

0 I I I 
10 1OOO 10 OOO 

Figure  2 N u m b e r  o f  cyc les  for  c rack  g r o w t h  in i t i a t ion .  
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which, on integration, gives 

+ . (11) 
N = ~ -  In [ %,/(r/rN) %/(r/rN)-- 

This approximate result is also shown in Fig. 2 for 
c~ = 0.1. The results for K/Kr are not valid for low 
cycle numbers because of  the approximation 
inherent in Equation 4. No experimental data 
exists for these incubation cycles in polymers as 
far as the author is aware. 

5. Crack propagation 
When crack growth has initiated, a further cycle 
will result in the stress on ro falling to eOe, but on 
reloading the crack will grow by r0 as well as the 
zone increasing by that amount. Thus, ro = da/dN 

T A B  LE I rN/r at various a and N values (Equation 7) 

N c~ 

0.05 0.1 0.2 0.5 0.8 

1 1 1 1 1 1 
5 4.57 4.36 3.78 2.40 1.45 

10 8.83 7.80 6.1 2.97 1.51 
50 34.78 24.9 13.8 3.72 1.55 

100 58.68 35.9 17.2 3.85 - 
500 156.9 68.7 22.5 - - 

1,000 212.5 79.9 23.6 - - 
5,000 325.8 94.4 - - - 

10,000 356.1 97.0 - - - 
400 100 25 4 1.56 

I ". 

Slope =4 "a/ 
/ 

o 

K/gc 
o.4 oi5 oi6 07 o.s oi9 

-2 I , , ~ I I 
-o .~  - o . 4  -o .3  -o .2  --o-~ o 

Lo,:::j .~o KIKr 

Figure 3 Fatigue crack growth rate as a funct ion o fK/K e 
(log-log plot). 
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and Equation 5 may be written as: 

1 da 1 K 2 a 

re dN - (1 " a )  2 K--~ -- (1 -- a) 2" (12) 

Fig. 3 shows Equation 12 plotted in the usual 
log K versus log da/dN form. The result for a = 0 
is, of  course, 'a crack growth of  r per cycle and 
gives a straight line of slope 2. For small a values 
(<  0.2), the high K values tend to this slope also, 
but at K/Ke "~ 0.5 the slope is about 4 as in Equa- 
tion 1. For lower values of  K/Ke, there is a higher 

slope. 
Some fatigue crack growth data for dry Nylon 

66 taken from [13] is shown in Fig. 4 in the form 
of Equat ion  12. Four values of  R were used and 
the points of  each type were obtained on a single 
specimen. The predicted linear relationships are 
apparent but there are two regions with an abrupt 
transition. In each, the curves are accurately linear 
and may be extrapolated to the condition for 
da/dN = 0 which, from Equation 12, corresponds 
to K 2 =aK2e. Fig. 5 shows these intercepts 
plotted as a function of  R 2 in accordance with 
Equation 6 and a linear relationship results. At 
R 2 =  1, a =  1 so that by extrapolation, the 
appropriate Ke values can be found, which are 
Kea = 3.61 M N m  -3n and Ke~ = 6 . 7 7 M N m  -3/2, 
with f l  = 0.72 and f2 = 0.78, respectively. Since 
a increases with R 2, the slopes would be expected 
to increase since the slope is 

1 re 

(1 - ~ )~  K ~  

but they appear sensibly constant in Fig. 4. Using 
this slope in conjunction with Equations 2, the 
craze stress in the tip region ae may be calculated 
and some remarkably high figures are indicated, 
namely 7.2 and 3.4 GN m -~, respectively. These 
are a direct consequence of  the very small re values 
determined by the da/dN values, 1/am. A plane 
stress and a plane strain fracture mode has been 
demonstrated to exist in Nylon 66 [14] and the 
appropriate K e values are 3.5 and 8.5 MN m -3n 
which correspond reasonably closely with those 
determined here. This would suggest that at low K 
values, the crack growth is dominated by plane 
strain while at higher values plane stress is effec- 
tive. 

Some rather more sparse data taken from [15] 
are shown in Fig. 6 for PMMA. Variations in slopes 
with R cannot be determined here and intercepts 
are measured by drawing parallel lines to the more 
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Figure 4 Fatigue crack growth data for dry Nylon 66 from [13] plotted in accordance with Equation 12. 

plentiful low R value data. There is no evidence of  
any low K transit ion here, although a lower bound 
indicated by the broken line is possible. Fig. 7 
shows the ~rK~ data as a function of  R ~ giving 
reasonable linearity with Kc = 1.04 MN m -3/2 and 
f =  0.82. The craze stress in this case is much 
lower than the Nylon and is 735 MN m -2. This is 
still substantially greater than indicated by  static 

tests. 
Some similar data for polycarbonate ,  also from 

[15] ,  is shown in Fig. 8 for low R values. The 

lower bound result at low K values with a = 0 is 
\ a p p a r e n t  here also. There is a craze stress of  

325 MN m -2 for the major part  of  the curve. 

Table II gives the collected data for these three 
materials and it is clear that  uc is generally much 
higher than any yield or craze stress. The low K 
value data gives extremely high values which 
suggest no yielding at all, but  the establishment o f  
a state of  triaxial stress in the heavily constrained 
crack tip region which is essentially still elastic. 
The fatigued craze stresses, auc,  are of  the same 

TABLE II Derived values from crack propagation data 

Material K e a e ~ cwe E ~ e Comparison 
(MNm -3~ ) (MNm -~ ) (MNm -2 ) (GNm -~ ) 6am) ~e 6um) 

Nylon 66 6.77 3,400 0.22 748 2.5 5.4 395 [14] 
3.61" 7,200 0.28 2,016 2.5 1.8 67 [14] 

PMMA 1.04 735 0.18 132 2.7 0.5 1.7 [10] 
PC 2.2] 325 0.09 29 3.0 5.0 6.65/ [11] 

*Plane strain values 
]'Taken from [11]. 
$Converted from a plane stress value. 
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Figure 5 Intercepts at daldN = 0 for Nylon 66 as a func- 
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Figure 7 Intercept value at da/dN for PMMA as a function 
of RL 
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Figure 6 Fatigue crack growth data 
from [15], PMMA at 5 Hz. 



order as expected craze stresses (although still very 
high for the low K data in Nylon). This suggests a 
mechanism in which the high stress concentration 
is reduced by fatigue to form the craze in addition 
to fatigue damage on existing craze material as 
originally assumed. The COD values are less than 
static values, particularly for Nylon 66. Data col- 

o e and E, i.e. from Equation 2; 

Ke 2 = 5eoeE. 

It has been shown previously that a constant craze 
strain, ey, is a reasonable assumption [10],  so that 

Ke = X/(6eey)E (13) 

lected specifically, for,:,the qaurpose-woutd,  be~ 8ince~the,materiaMs~viseo:etastic;:'Eis;time'depen - 
necessary to establish these values precisely, dent and for many polymers this can be expressed 

TABLE III  Frequency effect parameters 

Material rn - -mn n tan zX 

Nylon 66 6.1 0.35 0.06 [13] 0.05 [13] 
HDPE 3.1 0.53 0.17 0.06 [16] 
PMMA 4.5 0.43 0.095 [15] 0.07 [10] 

6. Frequency effects 
There is considerable evidence available on fre- 
quency effects in the fatigue of  polymers (see 
[1]).  These effects may be deduced very simply 
from the model since the assumption of a constant 
COD means that Ke may be expressed in terms of 
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o O  0 9 J  J 
O 0"5 1"O 

Ka(MN rn-2) 2 i1] 
Figure 8 Fatigue crack growth data for polycarbonate 
from [15]. 

as 

E = Eo t - n  

where Eo is the unit time modulus, and n is 
approximately constant for any visco-elastic 
process and for low levels of  visco-elasticity is 
approximately equal to the loss factor tan A. For 
cyclic stresses, the time scale which determines E 
is given approximately by 

t = a )  - 1  

where ~o is the frequency, so that Equation 13 
may  now be written as 

Ke = X/ (Seey)Eoco  n (14) 

Now, since 6 e is assumed constant, r e is constant 
so that in Equation 12 changes in frequency will 
only change Ke for a given K value. I f  we now use 
the approximate form of Equation 12 as indicated 
by the Paris equation, we may write 

d a / d N  o: ( K / K e )  m (15) 

where m may be determined for a given K range 
(see Fig. 3). The dependence of da/dN on a~ is 
then given from Equations 14 and 15, so that 

da/dN oc w-ran (16) 

Fig. 9 shows data for dry Nylon 66 and high den- 

~.~E [~" ~ ' 3 S ,  dry nY I ~  

~ HDPE N O  

~IO 7 ~ .  ~"  

-I O I "[3 
Loglo W (Hz) 

Figure 9 The effect of frequency on fatigue crack growth 
rate from [13]. 
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sity polyethylene (HDPE) taken from [13] 
plotted as log da/dN versus log co and reasonable 
linearity is indicated. Table III shows the slopes- 
( - m n )  together with m values obtained from 
log K - l o g  da/dN graphs. Also  shown are results 
taken from [5] in which data on PMMA was fitted 
by a regression analysis to 

- 0 4 3 -  2.13 ~ 2 . 3 9 ,  
da/dlV o: w " Kmean 

so that we may use 

mn = 0~43 a n d m  = 2.13 + 2.39 

The values n can be seen to agree reasonably well 
with those of  tan A except for HDPE. This dis- 
crepancy probably arises from differences in the 
particular material used, since substantial varia- 
tions are possible in HDPE. 

7.  F a t i g u e  l i f e  
The fatigue life may be computed by integrating 
the crack growth rate until the applied value of K 
reaches K e. I f  we consider the most simple case of  
a large sheet with a constant cyclic stress a, and a 
small crack of length a, then 

K = ax/(zra). 

From Equation 12, we may write: 

da r e 0 2 ffa o~ 
dN - (1 - -002  K~ ( 1 - - a )  2 (17) 

If  the original crack length is ao, then the original 
value of  K is 

Ko 2 = a2rrao, 

and by rearranging and integrating Equation 17, 
we have 

NL = (1 -- a)  2 K----~e2 ~1 (X --  a)  -1 dx 
0 .2 f i f e  x 0 

where x = ( K / K c )  2 , and Xo = (Ko/Kc)  2 �9 On com- 
pleting the integration, we have finally 

I f  we recall the number of  incubation cycles, NI,  
from Equation 11, we have a similar expression in 
terms of Xo, so that the total life is given by 
NL + NI. In general, NI and r are of  similar magni- 
tude, but for practical crack lengths, ao[re >> 1, so 
that N L >>NI. Very small natural flaws could, 
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however, result in a substantial proportion of the 
life being incubation. 

Some failure lives and crack growth data are 
given in [13] for HDPE in a detergent Adinol. The 
curve from Equation 12 is shown in Fig. 10 in 
which the points are taken from the graphs in 
[13]. Kc is given as 2.2MN m -3/2 so that, from 
Fig. 10, we have c~ = 0.08 and from the slope 

rc = 0.05 pan 

o .b3  

0 .02  

O'O1 

�9 

I 2 
K:t(MN m-2) 2 rn 

I 
o 3 

Figure 10 Fatigue crack growth data; HDPE in Adinol at 
20 Hz. 
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Figure 11 Cycles to failure as a function of r for 
a = 0.05; HDPE in Adinol. 



The data given is for ao = 9.5 mm, which is suf- 
ficiently small to avoid finite width effects in the 
speciment of width 0.127 m, so that Equation 18 
is valid. The number of cycles to failure are shown 
plotted in Fig. 11 versus ~b for the appropriate 

K / K  e values and a good linear relationship is 
apparent. From this line, a/re = 12 x 104 SO that 
r e may again be computed, i.e. 

9.5 x 10 -a 
re -- 12 x 104 m = O.08/ma 

which agrees quite well with the value from the 
crack growth data. 

8. Conclusions 
The model appears to be successful in describing 
crack growth data on several polymers. The stress 
values at the craze tip regions are very high and 
suggest that the fatigue processes induce craze for- 
mation as well as damaging existing crazes. The 
general dependence of growth rate on K is in 
accord with the Paris equation and there is some 
evidence of a change of behaviour at low K values. 
In all the materials there is a tendency for the 
COD to be less in fatigue than in static failure. 
Frequency effects can be described accurately by 
the model by accounting for changes in Kc. 
Finally, fatigue life is accurately predicted by 
integrating the crack growth rate. The suggestions 
given here show some promise, at least under the 
range of conditions considered, and the model is 
worthy of further investigation. 
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